Conjugate direction methods were proposed in the early 1950s. When high speed digital computing machines were developed, attempts were made to lay the fo- dations for the mathematical aspects of computations which could take advantage of the ef?ciency of digital computers. The National Bureau of Standards sponsored the Institute for Numerical Analysis, which was established at the University of California in Los Angeles. A seminar held there on numerical methods for linear equationswasattendedbyMagnusHestenes, EduardStiefel ...
Read More
Conjugate direction methods were proposed in the early 1950s. When high speed digital computing machines were developed, attempts were made to lay the fo- dations for the mathematical aspects of computations which could take advantage of the ef?ciency of digital computers. The National Bureau of Standards sponsored the Institute for Numerical Analysis, which was established at the University of California in Los Angeles. A seminar held there on numerical methods for linear equationswasattendedbyMagnusHestenes, EduardStiefel andCorneliusLanczos. This led to the ?rst communication between Lanczos and Hestenes (researchers of the NBS) and Stiefel (of the ETH in Zurich) on the conjugate direction algorithm. The method is attributed to Hestenes and Stiefel who published their joint paper in 1952 [101] in which they presented both the method of conjugate gradient and the conjugate direction methods including conjugate Gram-Schmidt processes. A closelyrelatedalgorithmwasproposedbyLanczos[114]whoworkedonalgorithms for determiningeigenvalues of a matrix. His iterative algorithm yields the similarity transformation of a matrix into the tridiagonal form from which eigenvalues can be well approximated.Thethree-termrecurrencerelationofthe Lanczosprocedurecan be obtained by eliminating a vector from the conjugate direction algorithm scheme. Initially the conjugate gradient algorithm was called the Hestenes-Stiefel-Lanczos method [86].
Read Less
Add this copy of Conjugate Gradient Algorithms in Nonconvex Optimization to cart. $173.74, like new condition, Sold by GreatBookPrices rated 4.0 out of 5 stars, ships from Columbia, MD, UNITED STATES, published 2008 by Springer.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
Fine. Sewn binding. Cloth over boards. 478 p. Contains: Tables, black & white. Nonconvex Optimization and Its Applications, 89. In Stock. 100% Money Back Guarantee. Brand New, Perfect Condition, allow 4-14 business days for standard shipping. To Alaska, Hawaii, U.S. protectorate, P.O. box, and APO/FPO addresses allow 4-28 business days for Standard shipping. No expedited shipping. All orders placed with expedited shipping will be cancelled. Over 3, 000, 000 happy customers.
Add this copy of Conjugate Gradient Algorithms in Nonconvex Optimization to cart. $175.49, new condition, Sold by GreatBookPrices rated 4.0 out of 5 stars, ships from Columbia, MD, UNITED STATES, published 2008 by Springer.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
New. Sewn binding. Cloth over boards. 478 p. Contains: Tables, black & white. Nonconvex Optimization and Its Applications, 89. In Stock. 100% Money Back Guarantee. Brand New, Perfect Condition, allow 4-14 business days for standard shipping. To Alaska, Hawaii, U.S. protectorate, P.O. box, and APO/FPO addresses allow 4-28 business days for Standard shipping. No expedited shipping. All orders placed with expedited shipping will be cancelled. Over 3, 000, 000 happy customers.