As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large ...
Read More
As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. * Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets * Features real-world data sets from contemporary astronomical surveys * Uses a freely available Python codebase throughout * Ideal for students and working astronomers
Read Less
Add this copy of Statistics, Data Mining, and Machine Learning in to cart. $62.49, good condition, Sold by HPB-Red rated 5.0 out of 5 stars, ships from Dallas, TX, UNITED STATES, published 2014 by Oxford University Press.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Add this copy of Statistics, Data Mining, and Machine Learning in to cart. $66.58, good condition, Sold by Goodbooks rated 4.0 out of 5 stars, ships from Tontitown, AR, UNITED STATES, published 2014 by Princeton University Press.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
Good. Has a sturdy binding with some shelf wear. May have some markings or highlighting. Used copies may not include access codes or Cd's. Slight bending may be present.
Add this copy of Statistics, Data Mining, and Machine Learning in to cart. $114.93, good condition, Sold by Bonita rated 4.0 out of 5 stars, ships from Newport Coast, CA, UNITED STATES, published 2014 by Princeton University Press.
Add this copy of Statistics, Data Mining, and Machine Learning in to cart. $139.70, good condition, Sold by TEXTSHUB rated 5.0 out of 5 stars, ships from Franklin Lakes, NJ, UNITED STATES, published 2014 by Oxford University Press.
Add this copy of Statistics, Data Mining, and Machine Learning in to cart. $160.09, new condition, Sold by Bonita rated 4.0 out of 5 stars, ships from Newport Coast, CA, UNITED STATES, published 2014 by Princeton University Press.