Technological advancement in chip development, primarily based on the downscaling of the feature size of transistors, is threatening to come to a standstill as we approach the limits of conventional scaling. For example, when the number of electrons in a device's active region is reduced to less than ten electrons (or holes), quantum fluctuation errors will occur, and when gate insulator thickness becomes too insignificant to block quantum mechanical tunneling, unacceptable leakage will occur. Fortunately, there is truth in ...
Read More
Technological advancement in chip development, primarily based on the downscaling of the feature size of transistors, is threatening to come to a standstill as we approach the limits of conventional scaling. For example, when the number of electrons in a device's active region is reduced to less than ten electrons (or holes), quantum fluctuation errors will occur, and when gate insulator thickness becomes too insignificant to block quantum mechanical tunneling, unacceptable leakage will occur. Fortunately, there is truth in the old adage that whenever a door closes, a window opens somewhere else. In this case, that window opening is nanotechnology. Silicon Nanoelectronics takes a look at at the recent development of novel devices and materials that hold great promise for the creation of still smaller and more powerful chips. Silicon nanodevices are positoned to be particularly relevant in consideration of the existing silicon process infrastructure already in place throughout the semiconductor industry and silicon's consequent compatibility with current CMOS circuits. This is reinforced by the nearly perfect interface that can exist between natural oxide and silicon. Presenting the contributions of more than 20 leading academic and corporate researchers from the United States and Japan, Silicon Nanoelectronics offers a comprehensive look at this emergent technology. The text includes extensive background information on the physics of silicon nanodevices and practical CMOS scaling. It considers such issues as quantum effects and ballistic transport and resonant tunneling in silicon nanotechnology. A significant amount of attention is given to the all-important silicon single electron transistors and the devices that utilize them. In offering an update of the current state-of-the-art in the field of silicon nanoelectronics, this volume serves well as a concise reference for students, scientists, engineers, and specialists in various fields, in
Read Less
Add this copy of Silicon Nanoelectronics to cart. $77.96, new condition, Sold by Ingram Customer Returns Center rated 5.0 out of 5 stars, ships from NV, USA, published 2019 by CRC Press.
Add this copy of Silicon Nanoelectronics to cart. $90.94, new condition, Sold by GreatBookPrices rated 4.0 out of 5 stars, ships from Columbia, MD, UNITED STATES, published 2019 by CRC Press.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
New. Intended for professional and scholarly audience. In Stock. 100% Money Back Guarantee. Brand New, Perfect Condition, allow 4-14 business days for standard shipping. To Alaska, Hawaii, U.S. protectorate, P.O. box, and APO/FPO addresses allow 4-28 business days for Standard shipping. No expedited shipping. All orders placed with expedited shipping will be cancelled. Over 3, 000, 000 happy customers.
Add this copy of Silicon Nanoelectronics to cart. $90.95, new condition, Sold by Booksplease rated 3.0 out of 5 stars, ships from Southport, MERSEYSIDE, UNITED KINGDOM, published 2019 by CRC Press.
Add this copy of Silicon Nanoelectronics to cart. $124.32, good condition, Sold by Bonita rated 4.0 out of 5 stars, ships from Newport Coast, CA, UNITED STATES, published 2019 by Routledge.