The evolution of the physical/ chemical sciences towards understanding the behavior of matter at the molecular level has been accompanied by a rapid increase in studies of the properties and functioning of confined water; that is, water in small clusters and nanoparticles or confined to solid/liquid thin films, surfaces and interfaces. These studies represent a convergence of interests and methodologies. That is, much emerging science, both basic and applied, depends on an understanding of confined water for significant ...
Read More
The evolution of the physical/ chemical sciences towards understanding the behavior of matter at the molecular level has been accompanied by a rapid increase in studies of the properties and functioning of confined water; that is, water in small clusters and nanoparticles or confined to solid/liquid thin films, surfaces and interfaces. These studies represent a convergence of interests and methodologies. That is, much emerging science, both basic and applied, depends on an understanding of confined water for significant advances; and the technical ability to gain that understanding has evolved only during the past decade or two. Firm concepts of the behavior of water in a variety of confining geometries are basic to advances in molecular biology, weather phenomena, atmospheric chemistry, interstellar and interplanetary physics and chemistry; as weIl as to the complete understanding of properties of macroscopic amounts of water and water-solute systems. In recognition of the growing importance of studies of confined water, a Telluride (Colorado) workshop was convened in August of 2000. This was an exceptionally strong 5-day conference with numerous informative talks by leading scientists on both basic and applied aspects of the subject. Lively discussions left the participants spent.
Read Less