Over the last several years, the four authors have jointly conducted research into the analysis of vibrating Mindlin plates as a collaborative project between Nanyang Technological University, The National University of Singapore, and The University of Queensland. The research was prompted by the fact that there is a dearth of vibration results for Mindlin plates when compared to classical thin plate solutions. To generate the vibration results, the authors have successfully employed the Ritz method for general plate shapes ...
Read More
Over the last several years, the four authors have jointly conducted research into the analysis of vibrating Mindlin plates as a collaborative project between Nanyang Technological University, The National University of Singapore, and The University of Queensland. The research was prompted by the fact that there is a dearth of vibration results for Mindlin plates when compared to classical thin plate solutions. To generate the vibration results, the authors have successfully employed the Ritz method for general plate shapes and boundary conditions. The Ritz method, once thought to be awkward for general plate analysis, can be automated through suitable trial functions (for displacements) that satisfy the geometric plate boundary conditions a priori . This work has been well-received by academics and researchers, as indicated by the continual requests for the authors' papers and the Ritz software codes. This monograph is written with the view to share this so-called p -Ritz method for the vibration analysis of Mindlin plates and its software codes with the research community. To the authors' knowledge, the monograph contains the first published Ritz plate software codes of its kind.
Read Less