"Quantum information and contemporary smart network domains are so large and complex as to be beyond the reach of current research approaches. Hence, new theories are needed for their understanding and control. Physics is implicated as smart networks are physical systems comprised of particle-many items interacting and reaching criticality and emergence across volumes of macroscopic and microscopic states. Methods are integrated from statistical physics, information theory, and computer science. Statistical neural field ...
Read More
"Quantum information and contemporary smart network domains are so large and complex as to be beyond the reach of current research approaches. Hence, new theories are needed for their understanding and control. Physics is implicated as smart networks are physical systems comprised of particle-many items interacting and reaching criticality and emergence across volumes of macroscopic and microscopic states. Methods are integrated from statistical physics, information theory, and computer science. Statistical neural field theory and the AdS/CFT correspondence are employed to derive a smart network field theory (SNFT) and a smart network quantum field theory (SNQFT) for the orchestration of smart network systems. Specifically, a smart network field theory (conventional or quantum) is a field theory for the organization of particle-many systems from a characterization, control, criticality, and novelty emergence perspective"--
Read Less