Volterra Families of Pseudodifferential Operators.- 1. Basic notation and general conventions.- 1.1. Sets of real and complex numbers.- 1.2. Multi-index notation.- 1.3. Functional analysis and basic function spaces.- 1.4. Tempered distributions and the Fourier transform.- 2. General parameter-dependent symbols.- 2.1. Asymptotic expansion.- 2.2. Homogeneity and classical symbols.- 3. Parameter-dependent Volterra symbols.- 3.1. Kernel cut-off and asymptotic expansion.- 3.2. The translation operator in Volterra symbols.- 4. ...
Read More
Volterra Families of Pseudodifferential Operators.- 1. Basic notation and general conventions.- 1.1. Sets of real and complex numbers.- 1.2. Multi-index notation.- 1.3. Functional analysis and basic function spaces.- 1.4. Tempered distributions and the Fourier transform.- 2. General parameter-dependent symbols.- 2.1. Asymptotic expansion.- 2.2. Homogeneity and classical symbols.- 3. Parameter-dependent Volterra symbols.- 3.1. Kernel cut-off and asymptotic expansion.- 3.2. The translation operator in Volterra symbols.- 4. The calculus of pseudodifferential operators.- 4.1. Elements of the calculus.- 4.2. The formal adjoint operator.- 4.3. Sobolev spaces and continuity.- 4.4. Coordinate invariance.- 5. Ellipticity and parabolicity.- 5.1. Ellipticity in the general calculus.- 5.2. Parabolicity in the Volterra calculus.- References.- The Calculus of Volterra Mellin Pseudodifferential Operators with Operator-valued Symbols.- 1. Preliminaries on function spaces and the Mellin transform.- 1.1. A Paley-Wiener type theorem.- 1.2. The Mellin transform in distributions.- 2. The calculus of Volterra symbols.- 2.1. General anisotropic and Volterra symbols.- 2.1.1. Hilbert spaces with group-actions.- 2.1.2. Definition of the symbol spaces.- 2.1.3. Asymptotic expansion.- 2.1.4. The translation operator in Volterra symbols.- 2.2. Holomorphic Volterra symbols.- 3. The calculus of Volterra Mellin operators.- 3.1. General Volterra Mellin operators.- 3.2. Continuity in Mellin Sobolev spaces.- 3.3. Volterra Mellin operators with analytic symbols.- 4. Kernel cut-off and Mellin quantization.- 4.1. The Mellin kernel cut-off operator.- 4.2. Degenerate symbols and Mellin quantization.- 5. Parabolicity and Volterra parametrices.- 5.1. Ellipticity and parabolicity on symbolic level.- 5.2. The parametrix construction.- References.- On the Inverse of Parabolic Systems of Partial Differential Equations of General Form in an Infinite Space-Time Cylinder.- 1. Preliminary material.- 1.1. Basic notation and general conventions.- Functional analysis and basic function spaces.- Preliminaries on function spaces and the Mellin transform.- Global analysis.- 1.2. Finitely meromorphic Fredholm families in ?-algebras.- 1.3. Volterra integral operators.- Some notes on abstract kernels.- 2. Abstract Volterra pseudodifferential calculus.- 2.1. Anisotropic parameter-dependent symbols.- Asymptotic expansion.- Classical symbols.- 2.2. Anisotropic parameter-dependent operators.- Elements of the calculus.- Ellipticity and parametrices.- Sobolev spaces and continuity.- Coordinate invariance.- 2.3. Parameter-dependent Volterra symbols.- Kernel cut-off and asymptotic expansion of Volterra symbols.- The translation operator in Volterra symbols.- 2.4. Parameter-dependent Volterra operators.- Elements of the calculus.- Continuity and coordinate invariance.- Parabolicity for Volterra pseudodifferential operators.- 2.5. Volterra Mellin calculus.- Continuity in Mellin Sobolev spaces.- 2.6. Analytic Volterra Mellin calculus.- Elements of the calculus.- The Mellin kernel cut-off operator and asymptotic expansion.- Degenerate symbols and Mellin quantization.- 2.7. Volterra Fourier operators with global weight conditions.- 3. Parameter-dependent Volterra calculus on a closed manifold.- 3.1. Anisotropic parameter-dependent operators.- Ellipticity and parametrices.- 3.2. Parameter-dependent Volterra operators.- Kernel cut-off behaviour and asymptotic expansion.- The translation operator in Volterra pseudodifferential operators.- Parabolicity for Volterra operators on manifolds.- 4. Weighted Sobolev spaces.- 4.1. Anisotropic Sobolev spaces on the infinite cylinder.- 4.2. Anisotropic Mellin Sobolev spaces.- Mellin Sobolev spaces with asymptotics.- 4.3. Cone Sobolev spaces.- 5. Calculi built upon parameter-dependent operators.- 5.1. Anisotropic meromorphic Mellin symbols.- 5.2. Meromorphic Volterra Mellin symbols.- Mellin quantization.- 5.3. Elements of the Mellin calculus.- Ellipticity and ...
Read Less
Add this copy of Parabolicity, Volterra Calculus, and Conical to cart. $50.81, good condition, Sold by Bonita rated 4.0 out of 5 stars, ships from Newport Coast, CA, UNITED STATES, published 2012 by Birkhäuser.
Add this copy of Parabolicity, Volterra Calculus, and Conical to cart. $51.65, new condition, Sold by Ingram Customer Returns Center rated 5.0 out of 5 stars, ships from NV, USA, published 2012 by Birkhauser.
Add this copy of Parabolicity, Volterra Calculus, and Conical to cart. $69.09, new condition, Sold by Ria Christie Books rated 5.0 out of 5 stars, ships from Uxbridge, MIDDLESEX, UNITED KINGDOM, published 2012 by Birkhauser.
Add this copy of Parabolicity, Volterra Calculus, and Conical to cart. $92.99, new condition, Sold by GreatBookPrices rated 4.0 out of 5 stars, ships from Columbia, MD, UNITED STATES, published 2003 by Springer.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
New. Sewn binding. Cloth over boards. 376 p. Contains: Unspecified. Operator Theory: Advances and Applications / Advances in Par, 138. In Stock. 100% Money Back Guarantee. Brand New, Perfect Condition, allow 4-14 business days for standard shipping. To Alaska, Hawaii, U.S. protectorate, P.O. box, and APO/FPO addresses allow 4-28 business days for Standard shipping. No expedited shipping. All orders placed with expedited shipping will be cancelled. Over 3, 000, 000 happy customers.