This book, drawing on recent literature, highlights several methodologies for the detection of outliers and explains how to apply them to solve several interesting real-life problems. The detection of objects that deviate from the norm in a data set is an essential task in data mining due to its significance in many contemporary applications. More specifically, the detection of fraud in e-commerce transactions and discovering anomalies in network data have become prominent tasks, given recent developments in the field of ...
Read More
This book, drawing on recent literature, highlights several methodologies for the detection of outliers and explains how to apply them to solve several interesting real-life problems. The detection of objects that deviate from the norm in a data set is an essential task in data mining due to its significance in many contemporary applications. More specifically, the detection of fraud in e-commerce transactions and discovering anomalies in network data have become prominent tasks, given recent developments in the field of information and communication technologies and security. Accordingly, the book sheds light on specific state-of-the-art algorithmic approaches such as the community-based analysis of networks and characterization of temporal outliers present in dynamic networks. It offers a valuable resource for young researchers working in data mining, helping them understand the technical depth of the outlier detection problem and devise innovative solutions to address related challenges.
Read Less
Add this copy of Outlier Detection: Techniques and Applications: A Data to cart. $187.87, new condition, Sold by Ingram Customer Returns Center rated 5.0 out of 5 stars, ships from NV, USA, published 2019 by Springer Nature Switzerland AG.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
New. Print on demand Contains: Illustrations, black & white, Illustrations, color. Intelligent Systems Reference Library . XXII, 214 p. 48 illus., 3 illus. in color. Intended for professional and scholarly audience.