"The advent of deep learning has transformed many fields and resulted in state-of-art solutions in computer vision, natural language processing and speech processing, etc. However, the application of deep learning algorithms to radars is still by and large at its nascent stage. A radar system consists of two parts: first, the radar hardware, including the RF transceiver, waveform generator, receiver unit, antenna and system packaging. State-of-art SiGe and CMOS are candidate technologies for mm-wave short-range radars and ...
Read More
"The advent of deep learning has transformed many fields and resulted in state-of-art solutions in computer vision, natural language processing and speech processing, etc. However, the application of deep learning algorithms to radars is still by and large at its nascent stage. A radar system consists of two parts: first, the radar hardware, including the RF transceiver, waveform generator, receiver unit, antenna and system packaging. State-of-art SiGe and CMOS are candidate technologies for mm-wave short-range radars and offer flexibility for integration and smaller form-factor. Second part is the sensing aspect, which relies on signal processing or deep learning algorithms that parses the radar return echo into meaningful target information facilitating a desired application"--
Read Less