This text covers all of the data science, machine learning, and deep learning topics relevant to materials science and engineering, accompanied by numerous examples and applications. Almost all methods and algorithms introduced are implemented "from scratch" using Python and NumPy. The book starts with an introduction to statistics and probabilities, explaining important concepts such as random variables and probability distributions, Bayes' theorem and correlations, sampling techniques, and exploratory data analysis, and ...
Read More
This text covers all of the data science, machine learning, and deep learning topics relevant to materials science and engineering, accompanied by numerous examples and applications. Almost all methods and algorithms introduced are implemented "from scratch" using Python and NumPy. The book starts with an introduction to statistics and probabilities, explaining important concepts such as random variables and probability distributions, Bayes' theorem and correlations, sampling techniques, and exploratory data analysis, and puts them in the context of materials science and engineering. Therefore, it serves as a valuable primer for both undergraduate and graduate students, as well as a review for research scientists and practicing engineers. The second part provides an in-depth introduction of (statistical) machine learning. It begins with outlining fundamental concepts and proceeds to explore a variety of supervised learning techniques for regression and classification, including advanced methods such as kernel regression and support vector machines. The section on unsupervised learning emphasizes principal component analysis, and also covers manifold learning (t-SNE and UMAP) and clustering techniques. Additionally, feature engineering, feature importance, and cross-validation are introduced. The final part on neural networks and deep learning aims to promote an understanding of these methods and dispel misconceptions that they are a "black box". The complexity gradually increases until fully connected networks can be implemented. Advanced techniques and network architectures, including GANs, are implemented "from scratch" using Python and NumPy, which facilitates a comprehensive understanding of all the details and enables the user to conduct their own experiments in Deep Learning.
Read Less
Add this copy of Materials Data Science: Introduction to Data Mining, to cart. $90.99, new condition, Sold by GreatBookPrices rated 4.0 out of 5 stars, ships from Columbia, MD, UNITED STATES, published 2024 by Springer International Publishing AG.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
New. Contains: Illustrations, color. Materials Research Society Series . XXVI, 618 p. 200 illus. in color. Intended for professional and scholarly audience. In Stock. 100% Money Back Guarantee. Brand New, Perfect Condition, allow 4-14 business days for standard shipping. To Alaska, Hawaii, U.S. protectorate, P.O. box, and APO/FPO addresses allow 4-28 business days for Standard shipping. No expedited shipping. All orders placed with expedited shipping will be cancelled. Over 3, 000, 000 happy customers.
Add this copy of Materials Data Science: Introduction to Data Mining, to cart. $91.00, new condition, Sold by Media Smart rated 4.0 out of 5 stars, ships from Hawthorne, CA, UNITED STATES, published 2024 by Springer International Publishing AG.
Add this copy of Materials Data Science: Introduction to Data Mining to cart. $94.22, new condition, Sold by discount_scientific_books rated 4.0 out of 5 stars, ships from Sterling Heights, MI, UNITED STATES, published 2024 by Springer International Publishing AG.