The quantum theory of magnetism is a well-developed part of contemporary solid-state physics. The basic concepts of this theory can be used to describe such important effects as ferromagnetic ordering oflocalized magnetic moments in crystals and ferromagnetism of metals produced by essentially delocalized electrons, as well as various types of mutual orientation of atomic magnetic moments in solids possessing different crystal lattices and compositions. In recent years, the spin-fluctuational approach has been developed, ...
Read More
The quantum theory of magnetism is a well-developed part of contemporary solid-state physics. The basic concepts of this theory can be used to describe such important effects as ferromagnetic ordering oflocalized magnetic moments in crystals and ferromagnetism of metals produced by essentially delocalized electrons, as well as various types of mutual orientation of atomic magnetic moments in solids possessing different crystal lattices and compositions. In recent years, the spin-fluctuational approach has been developed, which can overcome some contradictions between "localized" and "itinerant" models in the quantum mechanics of magnetic crystals. These are only some of the principal achievements of quantum magnetic theory. Almost all of the known magnetic properties of solids can be qualitat- ively explained on the basis of its concepts. Further developments should open up the possibility of reliable quantitative description of magnetic properties of solids. Unfortunately, such calculations based on model concepts appear to be very complicated and, quite often, not definite enough. The rather small number of parameters of qualitative models are usually not able to take into account the very different types of magnetic interactions that appear in crystals. Further development of magnetic theory requires quantitative information on electronic wave function in the crystal considered. This can be proved by electronic band- structure and cluster calculations. In many cases the latter can be a starting point for quantitative calculations of parameters used in magnetic theory.
Read Less
Add this copy of Magnetism and the Electronic Structure of Crystals to cart. $102.28, like new condition, Sold by GreatBookPrices rated 4.0 out of 5 stars, ships from Columbia, MD, UNITED STATES, published 2011 by Springer.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
Fine. Trade paperback (US). Glued binding. 170 p. Contains: Unspecified. Springer Solid-State Sciences, 98. In Stock. 100% Money Back Guarantee. Brand New, Perfect Condition, allow 4-14 business days for standard shipping. To Alaska, Hawaii, U.S. protectorate, P.O. box, and APO/FPO addresses allow 4-28 business days for Standard shipping. No expedited shipping. All orders placed with expedited shipping will be cancelled. Over 3, 000, 000 happy customers.
Add this copy of Magnetism and the Electronic Structure of Crystals to cart. $103.31, new condition, Sold by GreatBookPrices rated 4.0 out of 5 stars, ships from Columbia, MD, UNITED STATES, published 2011 by Springer.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
New. Trade paperback (US). Glued binding. 170 p. Contains: Unspecified. Springer Solid-State Sciences, 98. In Stock. 100% Money Back Guarantee. Brand New, Perfect Condition, allow 4-14 business days for standard shipping. To Alaska, Hawaii, U.S. protectorate, P.O. box, and APO/FPO addresses allow 4-28 business days for Standard shipping. No expedited shipping. All orders placed with expedited shipping will be cancelled. Over 3, 000, 000 happy customers.
Add this copy of Magnetism and the Electronic Structure of Crystals to cart. $103.32, new condition, Sold by Ingram Customer Returns Center rated 5.0 out of 5 stars, ships from NV, USA, published 2011 by Springer.
Add this copy of Magnetism and the Electronic Structure of Crystals to cart. $114.47, new condition, Sold by booksXpress, ships from Bayonne, NJ, UNITED STATES, published 2011 by Springer.