This book is concerned with the rich and fruitful interplay between the fields of computational logic and machine learning. The intended audience is senior undergraduates, graduate students, and researchers in either of those fields. For those in computational logic, no previous knowledge of machine learning is assumed and, for those in machine learning, no previous knowledge of computational logic is assumed. The logic used throughout the book is a higher-order one. Higher-order logic is already heavily used in some parts ...
Read More
This book is concerned with the rich and fruitful interplay between the fields of computational logic and machine learning. The intended audience is senior undergraduates, graduate students, and researchers in either of those fields. For those in computational logic, no previous knowledge of machine learning is assumed and, for those in machine learning, no previous knowledge of computational logic is assumed. The logic used throughout the book is a higher-order one. Higher-order logic is already heavily used in some parts of computer science, for example, theoretical computer science, functional programming, and hardware verifica tion, mainly because of its great expressive power. Similar motivations apply here as well: higher-order functions can have other functions as arguments and this capability can be exploited to provide abstractions for knowledge representation, methods for constructing predicates, and a foundation for logic-based computation. The book should be of interest to researchers in machine learning, espe cially those who study learning methods for structured data. Machine learn ing applications are becoming increasingly concerned with applications for which the individuals that are the subject of learning have complex struc ture. Typical applications include text learning for the World Wide Web and bioinformatics. Traditional methods for such applications usually involve the extraction of features to reduce the problem to one of attribute-value learning.
Read Less
Add this copy of Logic for Learning: Learning Comprehensible Theories to cart. $51.65, new condition, Sold by Ingram Customer Returns Center rated 5.0 out of 5 stars, ships from NV, USA, published 2010 by Springer-Verlag Berlin and Heidelberg GmbH & Co. K.
Edition:
2010, Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Add this copy of Logic for Learning: Learning Comprehensible Theories to cart. $58.86, new condition, Sold by booksXpress, ships from Bayonne, NJ, UNITED STATES, published 2010 by Springer-Verlag Berlin and Heidelberg GmbH & Co. K.
Edition:
2010, Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Add this copy of Logic for Learning to cart. $33.15, good condition, Sold by Swan Trading Company rated 4.0 out of 5 stars, ships from GEORGETOWN, TX, UNITED STATES, published 2003 by Springer.
Add this copy of Logic for Learning: Learning Comprehensible Theories to cart. $51.64, new condition, Sold by GreatBookPrices rated 4.0 out of 5 stars, ships from Columbia, MD, UNITED STATES, published 2003 by Springer.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
New. Sewn binding. Cloth over boards. 257 p. Contains: Unspecified. Cognitive Technologies. In Stock. 100% Money Back Guarantee. Brand New, Perfect Condition, allow 4-14 business days for standard shipping. To Alaska, Hawaii, U.S. protectorate, P.O. box, and APO/FPO addresses allow 4-28 business days for Standard shipping. No expedited shipping. All orders placed with expedited shipping will be cancelled. Over 3, 000, 000 happy customers.