Based on AI and machine learning, this book systematically presents the theories and methods for complex electro-mechanical system fault prognosis, intelligent diagnosis, and health state assessment in modern industry. The book emphasizes feature extraction, incipient fault prediction, fault classification, and degradation assessment, which are based on supervised-, semi-supervised-, manifold-, and deep learning; machinery degradation state tracking and prognosis by phase space reconstruction; and complex electro-mechanical ...
Read More
Based on AI and machine learning, this book systematically presents the theories and methods for complex electro-mechanical system fault prognosis, intelligent diagnosis, and health state assessment in modern industry. The book emphasizes feature extraction, incipient fault prediction, fault classification, and degradation assessment, which are based on supervised-, semi-supervised-, manifold-, and deep learning; machinery degradation state tracking and prognosis by phase space reconstruction; and complex electro-mechanical system reliability assessment and health maintenance based on running state info. These theories and methods are integrated with practical industrial applications, which can help the readers get into the field more smoothly and provide an important reference for their study, research, and engineering practice.
Read Less
Add this copy of Intelligent Fault Diagnosis and Health Assessment for to cart. $169.08, new condition, Sold by Ingram Customer Returns Center rated 5.0 out of 5 stars, ships from NV, USA, published 2023 by Springer Verlag, Singapore.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
New. Contains: Illustrations, black & white, Illustrations, color, Tables, color. XI, 467 p. 292 illus., 242 illus. in color. Intended for professional and scholarly audience.