Recent years have witnessed an explosion in the volume and variety of data collected in all scientific disciplines and industrial settings. Such massive data sets present a number of challenges to researchers in statistics and machine learning. This book provides a self-contained introduction to the area of high-dimensional statistics, aimed at the first-year graduate level. It includes chapters that are focused on core methodology and theory - including tail bounds, concentration inequalities, uniform laws and empirical ...
Read More
Recent years have witnessed an explosion in the volume and variety of data collected in all scientific disciplines and industrial settings. Such massive data sets present a number of challenges to researchers in statistics and machine learning. This book provides a self-contained introduction to the area of high-dimensional statistics, aimed at the first-year graduate level. It includes chapters that are focused on core methodology and theory - including tail bounds, concentration inequalities, uniform laws and empirical process, and random matrices - as well as chapters devoted to in-depth exploration of particular model classes - including sparse linear models, matrix models with rank constraints, graphical models, and various types of non-parametric models. With hundreds of worked examples and exercises, this text is intended both for courses and for self-study by graduate students and researchers in statistics, machine learning, and related fields who must understand, apply, and adapt modern statistical methods suited to large-scale data.
Read Less
Add this copy of High-Dimensional Statistics: A Non-Asymptotic Viewpoint to cart. $81.20, new condition, Sold by Ingram Customer Returns Center rated 5.0 out of 5 stars, ships from NV, USA, published 2019 by Cambridge University Press.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
New. Print on demand Contains: Line drawings, black & white, Halftones, black & white, Tables, black & white, Unspecified. Cambridge Series in Statistical and Probabilistic Mathematics . 49 b/w illus. 1 table 211 exercises. Intended for professional and scholarly audience.