This text intends to provide the student with the knowledge of a geometry of greater scope thatn the classical geometry taught today, which is no longer an adequate basis for mathematics of physics, both of which are becoming increasingly geometric. The geometry of surfaces is an ideal starting point for students learning geometry for the following reasons; first, the extensions offer the simplest possible introduction to fundamentals of modern geometry: curvature, group actions and covering spaces. Second, the ...
Read More
This text intends to provide the student with the knowledge of a geometry of greater scope thatn the classical geometry taught today, which is no longer an adequate basis for mathematics of physics, both of which are becoming increasingly geometric. The geometry of surfaces is an ideal starting point for students learning geometry for the following reasons; first, the extensions offer the simplest possible introduction to fundamentals of modern geometry: curvature, group actions and covering spaces. Second, the prerequisites are modest and standard and include only a little linear algebra, calculus, basic group theory and basic topology. Third and most important, the theory of surfaces of constant curvature has maximal connectivity with the rest of mathematics. They realize all the topological types of compact two-dimensional manifolds, and historically, they are the source of the main concepts of complex analysis, differential geometry, topology, and combinatorial group theory, as well as such hot topic as fractal geometry and string theory. the formal coverage is extended by exercises and informal discussions throughout the text.
Read Less