"Generative AI and Deep Learning: From Fundamentals to Advanced Applications" is a comprehensive guide that explores the exciting field of artificial intelligence (AI) and deep learning. Written for both beginners and seasoned professionals, this book delves into the foundational concepts of generative AI and deep learning architectures, including neural networks basics, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and more. The book starts with an overview of generative models, explaining their ...
Read More
"Generative AI and Deep Learning: From Fundamentals to Advanced Applications" is a comprehensive guide that explores the exciting field of artificial intelligence (AI) and deep learning. Written for both beginners and seasoned professionals, this book delves into the foundational concepts of generative AI and deep learning architectures, including neural networks basics, convolutional neural networks (CNNs), recurrent neural networks (RNNs), and more. The book starts with an overview of generative models, explaining their significance in generating new data samples and their various applications across industries. It covers popular generative models like autoencoders, restricted Boltzmann machines (RBMs), and deep belief networks (DBNs), providing insights into their workings and real-world use cases. Moving beyond the basics, the book explores advanced topics in generative AI, such as reinforcement learning integration and its applications in natural language processing (NLP). Readers will learn about cutting-edge techniques like transformer models, including BERT and GPT, and how they revolutionize language understanding and generation tasks. Throughout the book, ethical considerations and challenges in generative AI are highlighted, emphasizing the importance of fairness, transparency, and security in AI development. Real-world case studies showcase successful implementations of generative AI across diverse domains, from healthcare and finance to art and entertainment. Practical guidance is provided on building and deploying generative models, including model training, evaluation, and optimization strategies. The book also explores popular tools and frameworks like TensorFlow, PyTorch, and OpenAI GPT, empowering readers to harness the full potential of generative AI technology. With insights into emerging trends and future directions, "Generative AI and Deep Learning" offers a holistic view of the field, inspiring readers to explore new possibilities and contribute to the advancement of AI for the betterment of society. Whether you're a student, researcher, or industry professional, this book is your essential companion on the journey through the exciting world of generative AI and deep learning. Keywords: Generative AI, Deep Learning, Neural Networks, Autoencoders, Reinforcement Learning, Natural Language Processing, Ethics, Case Studies, Tools and Frameworks, Future Directions.
Read Less
Add this copy of Generative AI and Deep Learning: From Fundamentals to to cart. $11.01, like new condition, Sold by GreatBookPrices rated 4.0 out of 5 stars, ships from Columbia, MD, UNITED STATES, published 2024 by Independently Published.
Choose your shipping method in Checkout. Costs may vary based on destination.
Seller's Description:
Fine. Trade paperback (US). Glued binding. 160 p. In Stock. 100% Money Back Guarantee. Brand New, Perfect Condition, allow 4-14 business days for standard shipping. To Alaska, Hawaii, U.S. protectorate, P.O. box, and APO/FPO addresses allow 4-28 business days for Standard shipping. No expedited shipping. All orders placed with expedited shipping will be cancelled. Over 3, 000, 000 happy customers.