Arithmetic algebraic geometry is in a fascinating stage of growth, providing a rich variety of applications of new tools to both old and new problems. Representative of these recent developments is the notion of Arakelov geometry, a way of "completing" a variety over the ring of integers of a number field by adding fibres over the Archimedean places. Another is the appearance of the relations between arithmetic geometry and Nevanlinna theory, or more precisely between diophantine approximation theory and the value ...
Read More
Arithmetic algebraic geometry is in a fascinating stage of growth, providing a rich variety of applications of new tools to both old and new problems. Representative of these recent developments is the notion of Arakelov geometry, a way of "completing" a variety over the ring of integers of a number field by adding fibres over the Archimedean places. Another is the appearance of the relations between arithmetic geometry and Nevanlinna theory, or more precisely between diophantine approximation theory and the value distribution theory of holomorphic maps. Research mathematicians and graduate students in algebraic geometry and number theory will find a valuable and lively view of the field in this state-of-the-art selection.
Read Less