This textbook presents the basics of probability and statistical estimation, with a view to applications. The didactic presentation follows a path of increasing complexity with a constant concern for pedagogy, from the most classical formulas of probability theory to the asymptotics of independent random sequences and an introduction to inferential statistics. The necessary basics on measure theory are included to ensure the book is self-contained. Illustrations are provided from many applied fields, including information ...
Read More
This textbook presents the basics of probability and statistical estimation, with a view to applications. The didactic presentation follows a path of increasing complexity with a constant concern for pedagogy, from the most classical formulas of probability theory to the asymptotics of independent random sequences and an introduction to inferential statistics. The necessary basics on measure theory are included to ensure the book is self-contained. Illustrations are provided from many applied fields, including information theory and reliability theory. Numerous examples and exercises in each chapter, all with solutions, add to the main content of the book. Written in an accessible yet rigorous style, the book is addressed to advanced undergraduate students in mathematics and graduate students in applied mathematics and statistics. It will also appeal to students and researchers in other disciplines, including computer science, engineering, biology, physicsand economics, who are interested in a pragmatic introduction to the probability modeling of random phenomena.
Read Less