The first contemporary textbook on ordinary differential equations (ODEs) to include instructions on MATLAB???, Mathematica???, and MapleTM, A Course in Ordinary Differential Equations focuses on applications and methods of analytical and numerical solutions, emphasizing approaches used in the typical engineering, physics, or mathematics student's field of study. Stressing applications wherever possible, the authors have written this text with the applied math, engineer, or science major in mind. It includes a number of ...
Read More
The first contemporary textbook on ordinary differential equations (ODEs) to include instructions on MATLAB???, Mathematica???, and MapleTM, A Course in Ordinary Differential Equations focuses on applications and methods of analytical and numerical solutions, emphasizing approaches used in the typical engineering, physics, or mathematics student's field of study. Stressing applications wherever possible, the authors have written this text with the applied math, engineer, or science major in mind. It includes a number of modern topics that are not commonly found in a traditional sophomore-level text. For example, Chapter 2 covers direction fields, phase line techniques, and the Runge-Kutta method; another chapter discusses linear algebraic topics, such as transformations and eigenvalues. Chapter 6 considers linear and nonlinear systems of equations from a dynamical systems viewpoint and uses the linear algebra insights from the previous chapter; it also includes modern applications like epidemiological models. With sufficient problems at the end of each chapter, even the pure math major will be fully challenged. Although traditional in its coverage of basic topics of ODEs, A Course in Ordinary Differential Equations is one of the first texts to provide relevant computer code and instruction in MATLAB, Mathematica, and Maple that will prepare students for further study in their fields.
Read Less