This book highlights the applications of stochastic differential equations in white noise probability space to chemical reactions that occur in biology. These reactions operate in fluctuating environments and are often coupled with each other. The theory of stochastic differential equations based on white noise analysis provides a physically meaningful modelling framework. The Wick product-based calculus for stochastic variables is similar to regular calculus; therefore, there is no need for Ito calculus. Numerical examples ...
Read More
This book highlights the applications of stochastic differential equations in white noise probability space to chemical reactions that occur in biology. These reactions operate in fluctuating environments and are often coupled with each other. The theory of stochastic differential equations based on white noise analysis provides a physically meaningful modelling framework. The Wick product-based calculus for stochastic variables is similar to regular calculus; therefore, there is no need for Ito calculus. Numerical examples are provided with novel ways to solve the equations. While the theory of white noise analysis is well developed by mathematicians over the past decades, applications in biophysics do not exist. This book provides a bridge between this kind of mathematics and biophysics.
Read Less
Add this copy of Stochastic Differential Equations for Chemical to cart. $159.69, new condition, Sold by Ingram Customer Returns Center rated 5.0 out of 5 stars, ships from NV, USA, published 2025 by Springer.