The two parts of this monograph contain two separate but related papers. The longer paper in Part A obtains necessary and sufficient conditions for several types of codings of Markov chains onto Bernoulli shifts. It proceeds by replacing the defining stochastic matrix of each Markov chain by a matrix whose entries are polynomials with positive coefficients in several variables; a Bernoulli shift is represented by a single polynomial with positive coefficients, $p$. This transforms jointly topological and measure-theoretic ...
Read More
The two parts of this monograph contain two separate but related papers. The longer paper in Part A obtains necessary and sufficient conditions for several types of codings of Markov chains onto Bernoulli shifts. It proceeds by replacing the defining stochastic matrix of each Markov chain by a matrix whose entries are polynomials with positive coefficients in several variables; a Bernoulli shift is represented by a single polynomial with positive coefficients, $p$. This transforms jointly topological and measure-theoretic coding problems into combinatorial ones. In solving the combinatorial problems in Part A, the work states and makes use of facts from Part B concerning $p DEGREESn$ and its coefficients. Part B contains the shorter paper on $p DEGREESn$ and its coefficients, and is independ
Read Less
Add this copy of Resolving Markov Chains Onto Bernoulli Shifts Via to cart. $9.00, like new condition, Sold by J. Hood, Booksellers, Inc. rated 5.0 out of 5 stars, ships from Baldwin City, KS, UNITED STATES, published 2001 by American Mathematical Society.