Finite element modeling has developed into one of the most important tools at an engineer's disposal, especially in applications involving nonlinearity. While engineers coping with such applications may have access to powerful computers and finite element codes, too often they lack the strong foundation in finite element analysis (FEA) that nonlinear problems require. Finite Element Analysis: Thermomechanics of Solids builds that foundation. It offers a comprehensive, unified presentation of FEA applied to coupled ...
Read More
Finite element modeling has developed into one of the most important tools at an engineer's disposal, especially in applications involving nonlinearity. While engineers coping with such applications may have access to powerful computers and finite element codes, too often they lack the strong foundation in finite element analysis (FEA) that nonlinear problems require. Finite Element Analysis: Thermomechanics of Solids builds that foundation. It offers a comprehensive, unified presentation of FEA applied to coupled mechanical and thermal, static and dynamic, and linear and nonlinear responses of solids and structures. The treatment first establishes the mathematical background, then moves from the basics of continuum thermomechanics through the finite element method for linear media to nonlinear problems based on a unified set of incremental variational principles. As the use of FEA in advanced materials and applications continues to grow and with the integration of FEA with CAD, rapid prototyping, and visualization technology, it becomes increasingly important that engineers fully understand the principles and techniques of FEA. This book offers the opportunity to gain that understanding through a treatment that is concise yet comprehensive, detailed, and practical.
Read Less